

Try and Fail Game Development

Wrestle with your first Game

A.D.Mynx

Impressum

© 2015 A.D.Mynx

Druck und Verlag: epubli GmbH, Berlin, www.epubli.de

ISBN 978-3-****-***-*

Printed in Germany

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in

der Deutschen Nationalbibliografie; detaillierte bibliografische

Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1

Forword

I wrote this, for indie-developers. People who want build a game on

their own and not buy everything. This is not a recommendation list

if you want pay a team and develop them for you. If you want to do

pay a lot of money and don't know the basics of game development

it really will costs you a lot and the result maybe is absolute not what

you expected.

Forget for a moment pre-built engines like Unity, Unreal, Quake

SDK,…and so on. The all have really nice tools, really fast progress

with very less knowledge, but very soon you will come to a point

where you want make some difference in the game. You want make

it your game and this is the point where very much game-developers

seams to fail.

The SDKs provide a lot of knowledge pre-packed, but no guide

how to modify and understand them. Some of the communities

really helps you, others seams to only want make money. You start

to search on the web for scripts that you can put together, you may-

be have already learnt how to script.

You maybe have already made a mod for a game or something like

that, but now you have the feeling you know nothing? This is the

point where we all started and where I think maybe this guide will

help you to build up some knowledge, some basics and some under-

standing what you need to get to your game.

This book will not teach you to script, to make models, animate or

develop them. All of this I will let you open. I maybe suggest a pro-

gram which I use but this guide should only explain the basic for the

2

understanding what is needed and how you can plan for yourself, by

learning from things that I already learnt by mistakes.

For this book I think you already know some about scripting &

modeling- & animation-techniques. No worries, I don’t expect

much, but everything here in the book you can read more on web-

sites and other books.

3

Chapter 1 - How to Start

Where to start?

The key for you first game is to keep it simple and follow some

simple rules, so you not got frustrated scripting and building before

you finished.

Try to make simple things, make little steps and always keep on a

plan which you can handle. No try to reach the stars or you will

burn like Ikarus. Game-development is a really hard business, with

very little tolerance for failures. But it's possible to do, nowadays to

make good game alone or as a small team.

RULE 1: No hope without scripting knowledge.

Very clearly announcement, what often kills Indie-development

teams or ideas. When you have to find a programmer, which

“helps” you building your game, you can expect that you have to

pay them. Nearly absolute never, you will get a programmer which

works for you free and searching for them always is painful. Expect

costs 15-50$ per hour for scripting on the engine and 100-150$ per

hour for server scripts or services processing. Keep in mind that it

can take several days to make solutions for complex features. If you

don’t make an AAA game with putting much money on it, you have

to learn scripting.

Nearly everything can work as game-engine, to know what’s best

and possible. You need to know what a language can do before

choosing one. This seams easy but very often is impossible for a

beginner. I recommend that you take a look on their background,

4

for what the origin build was develop and then you have a nice idea

what this thing do without putting much time on reading. There are

a lot of different possibilities and nearly everything works.

Simple rule (for absolute beginners): JAVA - simple games, VB&C-

based languages - big games, SQL - database

I recommend that you use a “standard” programming language.

Nearly everything works; it’s you that have the power to do so. I

suggest using Microsoft VisualStudio with absolute popular lan-

guages like C++, VB.net, C#. Some of the SDKs and pre-build

engines use own scripting languages and I absolute not recommend

to use this, because you never can switch to another SDK without

double your time-input on learning another language again. Some of

them tricked you to think you use i.e. C# and you find a code on

the forum of a C# developer and it not works on the compiler of

your SDK. A programming beginner nearly never can solve this

kind of issues, because it’s beyond your skill level. On a standard-

ized programming language, you have a really good base of guides

for beginners and nearly always a solution on which you can learn.

Most recommend C# because nearly every IT-school learns to basic

on this. The most game-engines which you can get are made in

C++, but C++ is nearly dying. It’s a very great language, but very

complex and a very hard to master. I prefer VB.net, it's on you what

you likes most.

RULE 2: Story is not the Core on your first try

Would I say story is not important? Absolute not! I really love a

good story, but we are not writing a book, we are developing a

game. You really can think about story if you built an engine, most

upcoming studios run behind a story with a solution code that they

5

can’t handle, or running wild on a search for a “free” SDK which

can make what they want.

Even if your game will be the best game ever, it wouldn’t make any

sense if you wrote a AAA-game when nobody buys your idea. If you

want sell it , maybe you absolute really got lucky and a studio will

buy your idea. But this is very unusual. But your game will definitely

not look what you hope for it.

If you need go straight hardcore to story, with less and simple

scripting, you should maybe think on a point’n’click-adventure. If

it’s 2D, they have static pictures, easy to handle graphic overlays and

you can handle this kind of game real easy.

RULE 3: Keep always your resources in mind

Plan always forward and stick to this plan. If you not sure again,

what a function should do or what a feature was thought it should

be look like, than take a look on this plan, step back and make it

again from this point. Make a plan what you can afford, to use time

to each part. Try not to make big steps. Make it small but constant-

ly. With the relative time you need, you will think of a game that you

can develop, maybe not the perfect game for sure, but hey it works

and YOU build it.

For example: You want make a game with armors that the character

can put on. Than not make a plan to build full sets with hundreds of

pieces, instead make armor as dummy and try to make a script for it

with the possibility for more armor pieces. After the script is work-

ing and the dummy fits, the graphic-designers (if you are not alone)

can do what they want with it, but it has to be the same parameters

as the dummy. If there are no resources, you already have one piece

6

of working armor. Later when the game works right you can make

the rest of the armors.

The most problem is, that you nearly always alone or in a small

team. The team is nearly always this small that every person has a

specialization and sometimes a minor skill which can support an-

other part of the team. As less you can manage this skills and as

lesser people you are, as harder it is to make a change of this plan.

The result nearly always will be that the game never reaches the

finish line. You and your team will run in a circle of fixing bugs on

the old plan and get overflowed with the new bugs of the new fea-

tures plus the changes of the new features that has to be developed.

This costs time and more time and more time till a point where

nothing more goes and the game is cancelled. Really sad, when this

happens and all had canned prevented with a simple stick to the

plan.

RULE 4: No expansion of features during developing

It’s very important that you can see some progress in your game, to

not get stuck and lose the way to the finish-line. When you lose it,

you will make more than you planned and this can be fatal. Some

minor changes don’t hurt, but make a plan and stick to it till it is

finished. No special features during developing, wrote it down for

later, but stick straight to the basic functions. You can’t afford to

easily make a new feature like AAA-studios do, they have 10 man

only working to adjust the code for this, and you *take a look

around*? Right, you are alone.

Keep in Mind that an experienced developer can prevent work with

foreseen subroutines and binding-in of some (now) “senseless”

placeholders, but I think you don’t have this level now and it is hard

7

to do this right. This comes after years of scripting and nearly never

can be learned.

A lot of new features cost much time and sometimes need a fatal

process of restructuring your engine. If you are an experienced de-

veloper this isn’t this critical, because you split up subroutines wisely

and modifiable, as beginner you will sometimes have to kill the

whole engine and write it new, cause a change can causes a chain-

reaction in code and you easy can lose the thread, if this happens the

bugs in your game will overrun you.

RULE 5: Work in accordance of your scripting language

At first think about what you know and what you need to learn. If

you want something in your game and you don’t know how to do

this you need to find a solution and then build it, but always keep in

mind that you must follow the rules of the scripting language you

use. If you make something that is not conform to this rules your

game will causes many bugs or kill itself, maybe only simply this

functions will not work even the code is right and you never will get

a understanding what you did wrong. On examples ("EXA001

Jumping Cube") you will find an example, which maybe helps for

the understanding why we do the hard way

RULE 6: Math mostly isn’t the solution in dynamic-systems

When you need a feature of your game, than think by the planning

how you possible can solve it. If you are in development with the

logarithm you will try to solve it with math, but math isn’t always

the best solution.

For example: You want build a shooter like game, where you can

see the bullet fly’s. The bullet authentically will fall down, turns,

8

splitters etc. You can calculated that all mathematically, but be care-

ful that this calculation has run again and again 100 times per sec-

ond. This causes that your PC is too weak for this massive flow of

data, so you have something to do. Think about, if it’s absolute

necessary to calculate it, or would it reach to make it look like the

bullet flies authentically. Maybe you don’t need ballistics, maybe a

sway of the weapon would to the trick. There are a lot of options to

make it faster.

I recommend: As more dynamic, as more graphic solved
=lesser calculation & lesser traffic in network

There are so many data to calculated behind all what the user sees,

try to keep it simple and try to hide this “false” flying bullets. In a

dynamic system is the screen refresh process already part of a calcu-

lating algorithm and when the graphic already refreshes will the

bullet fly. The refreshing rate is the relative point in a millisecond

where the bullet stands. Change the refresh rate will case wrong

bullets fly faster or slower. Find the right time and calculate the right

position and daily it with refresh the bullets seams to fly right, but is

mathematically totally wrong misplaced. Or you make it more sim-

ple, like in most games, that the bullet is “too fast” to be seen.

RULE 7: Think if a team will benefits you, before team-up

I really don’t suggest that you try to get a team with no knowledge

of team leader skills or a good solid knowledge of (indie-) game

development. On the circle of indie developers you are only an ab-

solute beginner. That guys who knows what to do, want to get paid

or work on a pro-team. You nearly never can find a good solid team

with only an idea. Some of them even try to get in your team to steal

your code/engine. There are a lot of platforms which searching

team-members, nearly always the same, guess why? (more in chapter

9

4 about this) If you expect to learn in a team, than you will get very

disappointed about it, small-teams are too busy with their stuff and

have very rarely time to teach you anything. The result is, that you

leave without learnt any and maybe get frustrated

If you try to lead a team, take care of what they know, what they can

and maybe what they want to do. Not always your team shares your

enthusiasm to your game, or kind of ideas to make something your

way. Take care that you always know what’s going on and with what

software which parts are created. It’s kind of useless when you got

an absolute pro-designer, but he is working with a 10.000$-Software

that your team don’t have. If he left the team you lose nearly all

models and have very much work to get the old models remodeled,

updated and functional again on another modelling program. Rule

of thumb: nearly always 2 times switch of modeling software kills

nearly every studio.

RULE 8: Fear the Online-Option for you first game

Networking is a special thing; every scripter (should) know the ba-

sics of programing a network connection, but to get this working

right for an MMO is quite different. The problem is that you need a

lot of parameter. A simple Online-Option cans double the scripting

time of the game. Plus you can’t be sure that you can build it, after

all, if you never done it before. Network connections and constant

data streams are always risky and you have to be a good developer

to solve complex issues if there are any. Online Games uses a very

wide spectrum of tricks to hide network failures and package losses,

techniques that a beginner don’t know and that nowhere stands so

you can read them.

10

RULE 9: Never trust a GDKs/SDKs

Software-Development-Kits (short SDK) and Game-Development-

Kits (GDK) are very nice things, as long as they work with you and

not against you. All free versions of them (that not come from an

AAA-studio) have a very bad documentation. Most of them you will

never find the solution for you problem. Sometimes if you have a

problem, you can have luck and someone in the forum will help you

out. Mostly you only can except the bug or failure and can do noth-

ing about it. As developer they companies expect from you that you

can solve the problem of your own. As experience programmer you

could, as beginner you will die hard. Stay simple and try not to im-

plement every single SDK that possible is useful for your game. Stay

in your league, make small steps that you know what you can expect

and go forward with this. Especially files of class DLL have some-

times yearlong development time in it and they are already com-

piled. Even skilled programmers don’t can rebuild or understand all

of them. Normally everything what is official published from NVid-

ia (no Betas) and Microsoft works as expected, and you very rarely

see a bug.

11

Chapter 2 - Power of Knowledge (Basics)

Earn basic Knowledge

I recommend trying to make a simple game, which maybe have

something to do with the game you want to build. The key is to get

a basic version for a test, not the get a full game. Maybe a ball that

jumps so you can check a basic 2D-physic is more than a 3D-model

which falls through the ground and you don’t get why? With a basic

model you can gain understand for what you doing. If you use an

SKD you only will learn that the handbook says it should stop, but

doesn’t. A lot of people make failures because they don’t know the

basics (e.g. hitboxes, physics).

Maybe try to script a 2D-Game before reach for the stars on a 3D-

Engine. To master a 3D-Engine or make one self is nearly impossi-

ble as beginner, you really need so much understanding and testing

to know what to do. It’s not the puzzle-parts which are the most

problematic; it’s more the math behind all them. (e.g.: EXA002

Cube) Most people don’t know what complexity of the problem,

when you built a wall in a SDK and the player runs through the

wall.

Why the hard way when a SDK can do it?

The SDK already has all physics pre-developed; some of them have

advanced physic calculations, like ballistics. But what if you want

modify them. The prebuilt version not includes the possibility to

modify them. Some of the SDKs can be modify but you not will

understand why a change of a value make sometimes really bad

issues and where this issues comes. The result is an engine what

12

crashes your game; you fall through grounds or run through walls.

With your own engine you think out of this box and change all like

you want and maybe this can give you a really great possibility to

make the game you like and not the (maybe bad working) copy you

already seen. You have the change to fix bugs and really can solve

them. With the prebuilt SDK you nearly never can do this, because

the SDK is to complex, built by a team of developers and you need

years to really understand the whole structure of the code (if you

can get it), mostly you not even have the source code and you will

cruelly die trying without results.

13

Chapter 3 - Preplanning

Preplanning for a game

I read much about different kinds of development with different

engines; over all nearly every engine (besides a pre-built completed

SDK) have the same standards. For better understanding for the

development I made a flowchart which should help beginners to

step over the first failures (that we make too and you have or will

have).

IT-short forms

Srv - Server; Srvc - Service; DB - database

The problem of multiple graphics on same layer

The Question “Possible without multilayer graphics” I tried to ex-

plain on Example EXA003. You will find this problem quiet hard to

solve on the beginning. Because you really need carefully script the

entire world with or without this kind of graphic display, if you

make a failure on this, you will get bad screen fractures and some-

times false displayed pictures.

14

15

Chapter 4 - 3D: The Beginners Execution

Dynamic frames are very hard to handle, without good team. As

soon as you hit this point, you are beyond 1.000-3.000 hours for

your engine if you build it complete new.

Often Teams skip a few hundred hours with using an open-source

engine with basic adjustments, but as soon you need only a minor

modification of this, you easy can lost the won time again.

This point is king-sized entry on math and scripting - very hard to

handle. You get a lot of scripts and Open-Source for this, tons of

books, examples and freeware, but to get it work and put all right

together, you really have to know what you are doing.

Simple the basics you need to learn for this are gigantic. Bases on

what you want to build, you need to know exactly what can be done

in what manner, to what time and what is not. Every single failure in

calculation causes hundreds of failures per second. Even if you

catch all errors and hide them, your display-frames will drop drasti-

cally. You often know this on bad developed games, where the high-

end PC isn’t good enough to get it stable.

The next thing is that you really have to know programming well.

This is not simply put snippets together and give it a try, very simple

(sometimes with only one code) you can shoot the whole system.

Mostly this kind of displaying is not very popular in indie-

development, because you nearly always only can fail to make a

good game. If you use a Prebuild SDK for this, you can make some-

thing, but to make it good you have to make all new and this is hard.

16

You have not very much option. Direct3D (also the complete pack

known as DirectX) and OpenGL are the most used, simple you can

find a good base to build you first models with that. To get them

together will be harder.

Now you really fast find the difference between 2D and to a high

dynamic environment. Now you have to think in numbers, and

timelines instead of code-lines. You not so easy as before can im-

port a character, because there is no import. You have to build one,

with the full spectrum of function. There is no import-function for

animation, you have to make all yourself and every single step must

be in the right place and in the right time-step or it fails. That re-

quires a lot of knowledge, skill and time.

If you start a dynamic frame environment is like open the eyes, sit-

ting on a river. We don’t can stop the flow of the water, same as the

stream of the frame set. We can only close the application, like clos-

ing the eyes. If we put something in this stream, we need to load

and place it.

For Example: You build a world with models on it (like a house)

and want to put it in this dynamic frameset. You have to load the

saved model to coordinates X-, Y-, Z-axis plus the angle or refer-

ence points. This you have to put on a loading screen, because the

script only has this one action. Remember that this whole model has

no collision detection and you can run/fall through it, if you not

scripted it.

If we want join the world and we want do this with a character, the

character have much data in it. The player must be a model with a

zero-point near the ground, but over the ground. If it is zero the

model “player” will no detect collision and fall in the ground. If you

17

tried SDKs you already know this phenomenon by some SDKs.

The character must now join this world on a spawn point.

If you done all right, you now have nearly 1.000-2.000 lines of code,

some hours/days/weeks worked and a simple model standing on a

simple world. Now it can move, no lights, no shaders, no materials,

no effects and absolute no features. Only the basic to make the next

steps for you game, so you can start the design of the world.

Only after you finished this nearly unbearable project, you can start

to make some models, paint them, and start to create a world. Re-

member that this all isn’t possible yet. For everything you have to

script the parts. The script parts for loading textures on a building,

for 3D-geometric paths to detect the hitbox in the world and so on.

Maybe this all reads quiet frustrating and I really must say my first

project with this kind was, but I don’t want to make you false hope.

If you really go to 3D with all features you have to do this.

If you go 3D on an SDK/GDK you have the first parts all finished,

but you not can go any further. Everything that makes your game,

your game is stuck in the pre-build piece of software. If some bugs

come up, you have to except that. If you want make a new feature

and the engine dislike this, you can’t do anything against it.

That’s the money making trick of “free” Engines. To make it good

you need to pay a lot of money, for there development time.

 If you make the big failure as beginner to grab an Open-Source-

Engine I must disappoint you again. These Engines are not compet-

itors to Unreal and so on. Free Engines are so bad documented that

others makes money again, with “helping” (=selling), the missing

information. Ironic that this the same people who not keep records.

18

Chapter 5 - Team & Rolls

What rolls exists for game-development team?

There are many different views, as larger a team get as more sub-

rolls a team have. Take care that every one of them is some kind of

a specialist with own skills and own programs, I recommend a

standardized list for my teams than seams quiet helpful, maybe this

will help you too. Please take care that is a very rough prognosis for

nearly every game and not exact for a specific type of game. With

special feature this can turn completely

 Skill Time
required

Available
free

Available
paid

Animator + - - ++

Engine Designer +++ ++++ ---- ++++

Graphic Designer + ++ +++ +++

GUI Artist ++ + + +

Lead Game Designer o o o o

Level Designer + + o +

Modeler - ++ ++ +++

Scripter / Programmer + ++ o +++

Sound Artist + ++ + +++

Storywriter -- - ++++ ++++

Tester -- + ++++ ++++

Tutorial Engineer -- + -- o

Database Engineer + +++ ---- +

Webmaster - +++ + ++++

Learning / Teachers -- ++ o ++++

19

My experiences with team-work and recruited rolls

Animators: Animators are very rare. The most of them come from

art-schools and some of them a very quick by animate your models.

If there are not too many and too complex animations, I recom-

mend to buy them as service when you need them. A model that is

OK designed and need a walking animation (like a character) can be

animated by a good animator in nearly 1 hour; self a good modeler

can’t do this under 8 hours. Some of them will work for free, when

you use their name as main animator. This seams quiet not be a hard

job to get an animation to run, but mostly I have very good experi-

ence with this eccentric kind of people. I often could really fast can

implemented there animations because during he made to animation

in/with my model I could implement it and fast get a nearly seam-

less (and because that) fast implementation to my games.

Engine Designers: Short - There are absolute no free Engine-

designers that will help you. Even if there will be one, they never

will build your engine for free. Most of people who say they are

Engine-Designers have only experience in using an engine. You can

use someone of them if you want use a SDK and need some experi-

ence. This can come in handy if you want use parts of the Unreal-

Engine and you found someone that have the knowledge to give

advices so you can build your engine faster.

Tutorial Engineer: Understated and very important. I good Tuto-

rial can be the card for success, even they game is not complete

finished. If the tutorial is right and the first impression is good, you

have the first part of building a community. Everyone knows mini-

mum 1 game, that you hate because the tutorial was painful to play

and absolute no skip button for it.

20

Graphic Designers: This people are very easy to find. Nearly eve-

ryone that has Photoshop or Paint can make a texture; the problem

is to keep them in your team. To get a good graphic design of your

game, you need to stay in a line, which gives the game its look. If

you change to often the game will look like a patchwork and seems

odd. Depends on the size of your team, you should make on graphic

designer to the leader and this one should stay in team as long as it

takes to develop the game. Other designers in your team should try

to copy this look and make it similar to it.

GUI Designers: Seams not really important but I suggest giving

someone, that have experience on this a try. Sometimes I was really

impressed how handy some people are by creating a better GUI

then I and this in quicker time. The GUI is always a hard part of the

game and it’s always hard to say how to come to a good GUI. Some

say there should X-buttons and bars on the screen and give this

information to a GUI designer who creates a layout for it. The lay-

out takes than the graphic designers and gives the GUI your style.

Others say we make the possibility so the player can adjust his GUI

(sometimes completely). Others make the GUI very last with the

testers of the game. Most of them work for free, not much software

requirements. Sometimes Paint is enough for a layout.

Lead Game Designer: Only recommended if you buy a lot of stuff

for the team need and someone to coordinate the processes. Mostly

this is your main-job in a team. I think you know self that it’s not

wise to give the lead out your hand for your game.

21

Level Designer: Sometimes good, sometimes bad. Normally it’s

recommended that the graphic designers work close with the level

designers, this gives the game depth and atmosphere. If you want a

close atmosphere for your game it would be wise to take someone

of them in the team. As single person you nearly never will spend

much time on this detail, especially if you wrote a code.

Modeler: One of the really hardest to choose, simplest to get and

often really quick replaced persons in your team. Nearly every

“Modeler” has his own program and there are very much modeling-

software on the market. Some free, some very expensive. Whatever

you search, you will not really get that modeler you need. If they use

the professional Tools the models will be hard to import. The most

problem is that you have a very large problem to put an awesome

model to your game. Every modeling-software you have to need an

adapter for your engine. Often you will get freeware modeler that

learn with Software like Blender, but this is mostly every very use-

less for your Game, beside you program in Blender compatible en-

gine. The most problem is that you very hard can connect with this

software, because programs like Blender are for art and cinematic

and not for developing games.

Programmers: They are (self-chosen) gods and everyone needs

them. The truth is that there only 2 kinds of programmers in team-

search, that one that can script and want get paid; normally they are

long there and make good money with this. And the other kind are

beginners like yourself or guys who try everything to get free codes

and stuff for their own game. A very small part of programmers

really will help you out, by given you simple code snippets, but as

soon you need more work from them, they are gone.

22

Sound-Artist: Take care of them very well and recheck every sound

you use twice. Some of them use stolen tracks from the internet.

Some of them think they are doing the right thing with mixing

tracks with own sounds and republish it as there sound. This really

can cost you, when you for violating license of the origin owner.

Maybe you shouldn’t recruit one of this, till it’s really necessary.

Some bands give tracks for free; over sounds for regular uses can be

downloaded too. Take care to have a warrant of the owner to use

this tracks

Storywriter: Short - there are on every edge. You always will find a

person who has an idea for a game. Sometimes there is no special

storywriter in the team and often, the lead designer wrote the story

and quest itself. Storywriter can be useful if your game have a lot of

story branches and ability to choose options, but therefore you

more need a (book-) writer then someone in a forum. This people

are mostly rare and they need work close with scripter and graphic

designers together. With this combination, they game will more an

artwork.

Tester: Mostly easy to find, but very hard to get good people that

you can trust to make to game go further. Most of the “Tester” is

kids & students that want play a free game; it happen quiet often

that the feedback of this user group is not helpful for your game. If

you want a tester which you can trust, it must be one in the team,

which makes the same routines more than 100 times before release,

has a checklist and wrote bug-reports. Or you program a system

which tracks tester and give you a report what they have done and if

they like it, but this solution is very time intensive to develop.

23

Database Engineer: Short - There are no free ones. You will nev-

er find a free database engineer, because they are all working on

projects for companies. Every database that you will use is on SQL-

base, what nearly every company has, or on simple self-build data-

bases, like LIB, DLL etc. which make every developer itself. If you

want make a really good fast database (e.g.: for an MMO), than you

will have to read a lot and build itself or pay someone that makes it

for you.

Webmasters: Some of the Webmasters can be very useful, but my

experience is that mostly the free Webmasters make a site on a free

homepage-tool and after a few days/weeks there interest is too low

to go forward and the site orphaned. I don’t recommend using a

cheap designed, free site, when you want sell your game or stay in

touch with the community. Sometimes when games get popular you

get a good chance, that some of your fans, will help you out with

Web-design and you can host them self. It’s hard to say who you

can trust on this. But for a successful game it necessary to have a

good Homepage and Forum. More important is to say “an ACTIVE

Forum” where really even once a day one checks for questions of

the community. You will get to a point where you not have time to

be really every day in your forum and therefor you need a webmas-

ter.

Teachers: On longer project times it’s necessary to conserve the

information and teach this to newer members, when a team-

member change. If this happens often you need someone to take

care of this. I not recommend that you teach them until it’s only you

which have the required information. You have too much to do to

model, make bug fixes or patches.

24

Chapter X - Examples

EXA001 - Jumping Cube

I have a simple cube and want to make it “jump”. First of all declare

what this should do? Some SDKs want you to draw a cube a line.

Click on the cube, set player and Start. Let’s see what this means for

non SDK-built:

- The cube und ground have size and as player a hitbox
 -> Collusion calculation relative size-point box script, besides that

the box will fall through the ground
- Make the world moving

 -> create timer/ticker etc. (equal you script language) that re-
builds the scene every X-Millisecond. Besides that your box
will move nowhere even if your simple physic script is right.

- The player
-> starting point is relative to zero
-> Key bindings have to be set. Keep in mind that every key

which should cause a movement have to be bind manually. We
are not speaking of configuration-files or something. Only ba-
sics arrow movement or in our case the pressing of space to
jump

-> add gravity script / correction axis of box movement. Keep in
mind that we are talking about simple physics and not ad-
vanced to box will not turn it only fall simple in one axis. To
make it turn you really need deep thinking. We only need for
this test one simple command that causes the box to fall

-> generate a script which detects to hit of both elements

25

EXA002 - Brainstorming Cube Hitpoints

For example: A cube has 4 edges, every edge a relative point with a

possible hitpoint. If you want make the cube turn your script have

to calculate every possible hit every time it moves. If you let them

round (integer = 1) you have by 100 pixel 100 possible hitpoints and

on a turn in an angle to X- and Y-axis, every X milliseconds. You

maybe know right here it start to get complex in math. If you now

try this in 3D you have alone on a plain surface 100x100 hitpoints

and that multiplicity with 3 axes. If you than try to flip it, you have 3

angles in room coordinates with beginning and end coordinates

every X milliseconds. Why we need calculated every point? This is

needed if anything hit the surface the script can detect the hit. When

not, the hit will be not detected and no script will work to stop the

object it hits the surface.

STOP! STOP! STOP! STOP! STOP!

Don’t get frustrated at this point, it’s all possible, but keep in mind

that this is a lot of thinking and it’s only a cube without animations.

Because of this complexity you always have to think forward and

always try it simple. Yes you can calculate everything, but is it always

the solution? Sometimes a make-it-look-working is better than a

double-value-calculated, because else you nearly always need a serv-

er or supercomputer to calculate your game, even if there are only

simple blocks.

26

EXA003 - Brainstorming Multilayer-Graphics

Multilayer Graphics are some hard to understand as beginner, be-

cause a lot of programs do this automatically. A Multilayer-graphic-

overlay is a system which let you pit several pictures on another and

when they are transparent as background you can look through it.

The problem in developing is this doesn’t works, like often in fo-

rum, imagined as glass.

When you try to lay a transparent picture on a gray background,

then the surface will by gray. When you lay a transparent picture

with the red dot, on a surface and then the transparent picture again

on the top, the picture will be gray and the picture with the dot is

gone. Why? Simple but quiet not so simple.

In development every graphic object has an ID and a parent. The

parent of the first picture is the background. When you set a picture

to “transparent” this means ‘get the background’, but this isn’t what

we want, we want to red dot and then the background. So we have

to make a script we load the master of the picture above the back-

ground and then the top-picture with the master of the second pic-

ture.

This seams a lot of complexity on it, but its quiet simple and you

will use it often, for a 2D-dynamic world. You will need this for the

reloading of screen by a moving object. For example a character

which is centered on the screen and move around in a dungeon, or a

world that should be scrollable.

If you don’t use this only one picture can be shown a time. This is

maybe known in some games, when the character moves on a tile of

a dungeon and the item vanished. Then maybe the developers want-

ed this.

